

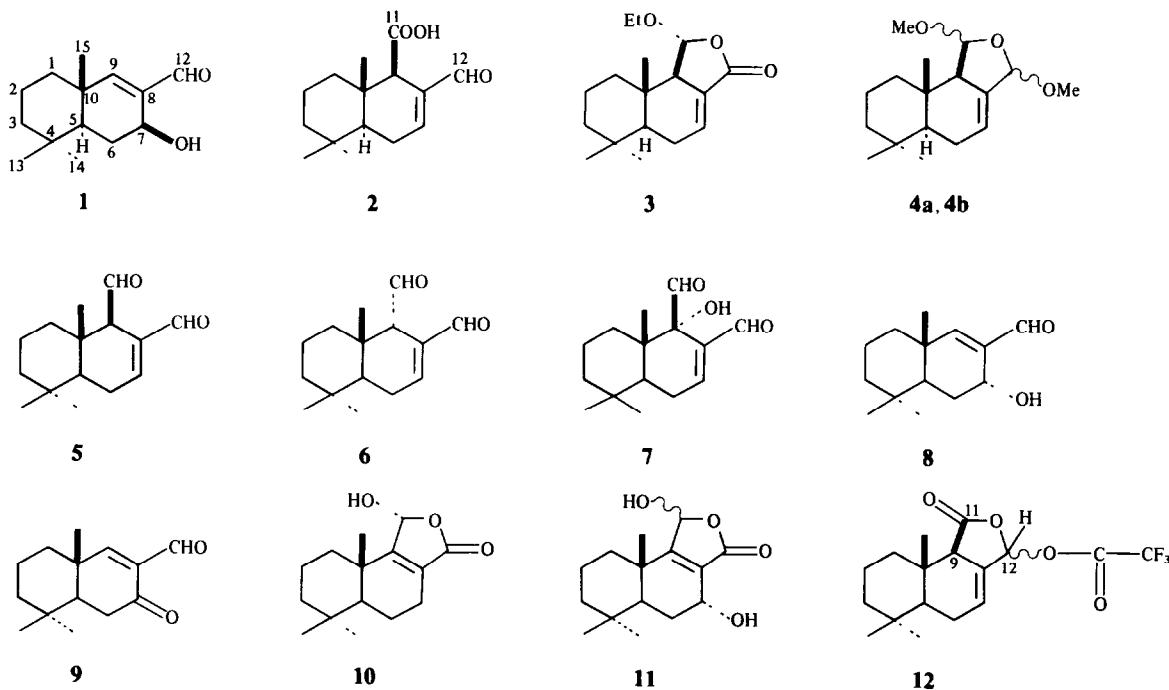
DRIMANE-TYPE SESQUI- AND NORIESQUITERPENOIDS FROM *POLYGONUM HYDROPIPER*

YOSHIYASU FUKUYAMA, TSUNEO SATO, IWAO MIURA and YOSHINORI ASAKAWA*†

Laboratories of Natural Product Chemistry, Otsuka Pharmaceutical Co. Ltd., Kawauchi-cho, Tokushima 771-01, Japan; *Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770, Japan

(Received 26 September 1984)

Key Word Index—*Polygonum hydropiper*; Polygonaceae; isopolygodial; polygonic acid; polygonone; 11-ethoxy-cinnamolide; polygodial acetal; valdiviolide; fuegin; drimane-type sesqui- and norsesquiterpenoids; anticomplement activity


Abstract—Polygonic acid, which shows weak anticomplement activity, has been isolated from leaves of *Polygonum hydropiper* together with four drimane-type sesquiterpenes, 11-ethoxycinnamolide, polygodial acetal, valdiviolide and fuegin and two drimane-type norsesquiterpenes, isopolygonal and polygonone.

INTRODUCTION

The folk medicinal plant, *Polygonum hydropiper* L. belonging to the Polygonaceae elaborates the intense pungent sesquiterpene dialdehydes, polygodial (5) and warburganal (7), which show potent antifeedant, antimicrobial, plant growth inhibitory, cytotoxic and piscicidal activities, together with several related drimane-type

sesquiterpenes [1-3]. Recently, we reported the isolation of a unique tri-*p*-coumaryl glucoside from the root of *P. hydropiper* [4]. Our continuing study of the chemical constituents of *P. hydropiper* leaves led to the isolation of three new drimane-type sesquiterpenes, polygonic acid (2), 11-ethoxycinnamolide (3) and polygodial acetals (4a and 4b), together with the previously known valdiviolide (10) and fuegin (11) [5], and two new drimane-type norsesquiterpenes, isopolygonal (1) and polygonone (9). This paper reports on the isolation and structural elucidation of the novel sesquiterpenoids and their anticomplement activity.

† To whom correspondence should be addressed.

RESULTS AND DISCUSSION

The diethyl ether extract of the leaf of *P. hydropiper* was chromatographed on silica gel, followed by HPLC or CC to give four novel drimanes, isopolygonal (1), polygonic acid (2), 11-ethoxycinnamolide (3), and polygonone (9), together with the previously known drimanes, valdiviolide (10) and fuegin (11) [5]. Chromatography of the methanol extract on silica gel resulted in the isolation of the polygodial acetals 4a and 4b.

Isopolygonal (1) had the molecular formula $C_{14}H_{22}O_2$ (HRMS: $[M]^+$ 222.1643; calc. 222.1620). Its spectral data showed the presence of an α,β -unsaturated aldehyde group [IR ν_{max} cm^{-1} : 1675, 1635; UV λ_{max} nm: 226; 1H NMR: δ 9.39 (1H, s), 196.2 (d)], a hydroxyl group (3540 cm^{-1}), three tertiary methyl groups (δ 0.90, 0.93, 1.15) and an olefinic proton (δ 6.49, s). The 1H NMR spectrum of 1 was quite similar to that of polygonal (8), previously isolated from the seed of *P. hydropiper* [1, 2] except for the signal δ 4.66 (dd, J = 9.7, 7.3 Hz) due to H-7. The ^{13}C NMR spectrum indicated a drimane-type sesquiterpenoid feature (Table 1). These spectral data suggested a close structural relationship between 1 and 8. Oxidation of 1 with pyridium chlorochromate [2] yielded polygonone (9), which was also isolated from the same diethyl ether extract and its spectral data were in agreement with those of 9 obtained from 8 by the same method [2]. This chemical conversion unambiguously verified that 1 has the same plane structure as 8 except for the configuration of the secondary hydroxyl group attached at C-7. The β -configuration of this hydroxyl group was evident from the J value (9.7 Hz) for H-7 compared with that ($W_{1/2} = 7$ Hz) in 8. Thus, the structure of isopolygonal was established to be 1.

Polygonic acid (2) had the molecular formula $C_{15}H_{22}O_3$ ($[M]^+$ 250). Its spectral data revealed the presence of a carboxylic acid group [IR ν_{max} cm^{-1} : 3150, 1705; ^{13}C NMR: δ 176.6 (s)], an α,β -unsaturated aldehyde group [IR ν_{max} cm^{-1} : 1685, 1645; UV λ_{max} nm: 225;

1H NMR: δ 9.38 (s); ^{13}C NMR: 192.6 (d)], three tertiary methyl groups (δ 0.92, 0.95, 0.97) which were similar to a drimane-type sesquiterpenoid. The 1H NMR and ^{13}C NMR spectra of 2 were found to be very similar to those of polygodial (5), the main pungent substance of *P. hydropiper* [1, 2] but, significantly, the secondary aldehyde group at C-9 in 5 was absent. These facts suggested that the carboxylic group in 2 might be placed at C-9. Treatment of 2 by trifluoroacetic anhydride gave a lactol (12). The direct 1H NMR measurement of 12 indicated the presence of a singlet methine bearing a trifluoroacetate at δ 6.80 assignable to H-12 and an olefinic proton at δ 6.34 due to H-7 which was shifted to a higher field since the conjugation was broken, suggesting that the carboxylic acid group in 2 should be placed at C-9. The orientation of the carboxylic acid group at C-9 was established by comparison of the ^{13}C NMR chemical shifts with those of polygodial (5) and isopolygodial (6) (Table 1). Namely, the chemical shifts of 2 were almost identical with those of 5, except for C-9 and C-11 which were shifted due to the effect of the different functional groups on each other, whereas the signals (δ 49.5, 15.2) due to C-5 and C-15 in 2 were found to be different from those in 6 (δ 44.5, 21.5), thus suggesting that the carboxylic acid at C-9 had to be in the β -configuration as in 5. Thus, the structure of polygonic acid was established to be 2.

11-Ethoxycinnamolide (3) showed the presence of a conjugated γ -lactone moiety [IR ν_{max} cm^{-1} : 1755, 1685; UV λ_{max} nm: 218]. The 1H NMR spectrum revealed the presence of three tertiary methyl groups (δ 0.83, 0.91, 0.93), an olefinic proton [δ 6.84 (ddd, J = 4.7, 3.9, 3.6 Hz)] assignable to a β -proton of an α,β -conjugated double bond, a methine [δ 5.32 (d, J = 6.1 Hz)] attached to an acetal carbon [δ 104.0 (d)] and also an ethoxy group [δ 1.27 (3H, t, J = 7.2), 2.95 and 3.69 Hz (each 1H, m)] attached to an asymmetrical carbon. The ^{13}C NMR spectrum (Table 1) and the extensive selective decoupling experiments of the 1H NMR spectrum (see Experimental) of 3 disclosed that it is a drimane-type sesquiterpene.

Table 1. ^{13}C NMR spectral data of compounds 1–6 (100.61 MHz, $CDCl_3$ TMS as int standard)

C No	1	2	3	4	5	6
1	38.0 (t)	40.1 (t)	39.3 (t)	39.9 (t)	39.7 (t)	37.2 (t)
2	18.5 (t)	18.6 (t)	18.5 (t)	18.5 (t)	18.0 (t)	18.5 (t)
3	41.5 (t)	42.0 (t)	42.3 (t)	42.0 (t)	41.9 (t)	42.2 (t)
4	33.0 (s)	33.2 (s)	33.1 (s)	33.3 (s)	29.6 (s)	32.9 (t)
5	48.6 (d)	49.5 (d)	49.7 (d)	49.9 (d)	49.2 (d)	44.5 (d)
6	27.0 (t)	24.8 (t)	25.1 (t)	23.7 (t)	25.1 (t)	25.7 (t)
7	67.7 (d)	151.0 (d)	136.0 (d)	121.2 (d)	154.2 (d)	153.1 (d)
8	139.1 (s)	139.1 (s)	128.2 (s)	137.7 (s)	139.0 (s)	137.6 (s)
9	164.5 (d)	55.3 (d)	57.6 (d)	58.0 (d)	60.6 (d)	58.8 (d)
10	37.7 (s)	35.7 (s)	34.1 (s)	33.4 (s)	36.9 (s)	37.7 (s)
11	—	176.6 (s)	104.3 (d)	104.0 (d)	202.1 (d)	201.7 (d)
12	196.2 (d)	192.6 (d)	167.8 (s)	107.0 (d)	193.6 (d)	192.6 (d)
13	21.3 (q)	22.1 (q)	21.4 (q)	21.5 (q)	21.8 (q)	21.9 (q)
14	32.7 (q)	33.3 (q)	33.2 (q)	33.1 (q)	33.0 (q)	32.7 (q)
15	20.1 (q)	15.2 (q)	15.3 (q)	14.1 (q)	15.1 (q)	21.5 (q)
OMe	—	—	—	55.7 (q)	—	—
				54.0 (q)		
OCH ₂ Me	—	—	14.7 (q)	—	—	—
OCH ₂ Me	—	—	66.4 (t)	—	—	—

Although the molecular ion in the mass spectrum was absent, a prominent peak $[M - OEt]^+$ at m/z 233.1522 ($C_{15}H_{21}O_2$) was detected, indicating that the ethoxy group could be incorporated into the acetal function. It was verified that the ethoxy group was bonded to C-11 since the methine proton [δ 5.32 (d)] attached to the acetal carbon collapsed to a singlet on irradiation at H-9 (δ 2.53). On consideration of the drimane-type sesquiterpene skeleton, coupled with the spectral data mentioned above, compound 3 might be a cinnamolide bearing the ethoxy group at C-11. Although there is no proof to support the assigned stereochemistry of the ethoxy group at C-11 at present, it was considered to be in the α -orientation which is the thermodynamically stable form [5].

Polygodial acetals (4a and 4b) were isolated from the methanol extract. Their IR and ^{13}C NMR spectra did not show any absorptions attributable to carbonyl groups. The 1H NMR spectrum showed a drimane-type sesquiterpene with, in particular, two methoxy groups (δ 3.40, 3.47 for 4a and 3.44, 3.49 for 4b) and two different methines [δ 4.90 (d , J = 4.0 Hz), 5.11 (s) for 4a; 4.90 (d , J = 4.0 Hz), 5.39 (s) for 4b] attached to an acetal carbon. Polygodial (5) was treated with methanol in the presence of *p*-toluenesulphonic acid to afford 4a and 4b, the formation of which was confirmed on TLC. Thus, 4a and 4b were the methanol adducts of polygodial (5). It is noteworthy that 4b was easily isomerized to 4a even during the measurement of the NMR spectra in deuteriochloroform and this resulted in a mixture of 4a and 4b being formed. The stereochemistry of 4a and 4b remain to be clarified. It is considered that the acetals 4a and 4b may be artefacts because they were isolated from the methanol extract.

Table 2 shows the anticomplement activity of the isolated drimanes. Polygonic acid (2) possessed moderate activity among the new drimane-type sesqui- and nor-sesquiterpenoids.

EXPERIMENTAL

Mps: uncorr. The solvents used for spectral determinations were $CDCl_3$ [1H NMR (400 or 200 MHz); ^{13}C NMR (100.61 MHz)], $CHCl_3$ ($[\alpha]_D$ and IR), unless otherwise stated, $EtOH$ (UV). MS: 70 eV; CC: silica gel (Merck 70–230 mesh); TLC: precoated silica gel plates F_{254} (Merck, 0.25 mm). Spots were visualized by UV (254 nm) and 40% $CeSO_4$ – H_2SO_4 or 2,4-

Table 2 Anticomplement activity*

Compounds	IC_{50} (μ g/ml)
Isopolygonal (1)	> 500
Polygonic acid (2)	250
11-Ethoxycinnamolide (3)	> 1000
Polygodial acetals (4a and 4b)	> 1000
Polygodial (5) [2]	10.5
Isopolygodial (6) [2]	> 500
Warburganal (7) [2]	> 500
Polygonal (8) [2]	> 500

*EA: 1×10^8 cells/ml; 1/180 GPC in GVB^{2+} [2] EA, Sensitized sheep erythrocytes; GPC, guinea pig serum (complement); GVB^{2+} , isotonic Veronal buffered saline containing 0.1% gelatin, 0.15 mM $CaCl_2$, and 1.0 mM $MgCl_2$, pH 7.3 and μ = 0.147

dinitrophenylhydrazine HPLC: LS-410 KG 20 \times 300 mm (flow rate 9.9 ml/min), μ -Porasil 8 \times 300 mm (3.5 ml/min), detected at 230 or 254 nm.

Plant material. *Polygonum hydropiper* was identified by one of us (Y.A.) and a voucher specimen has been deposited in the Herbarium of the Institute of Pharmacognosy, Tokushima Bunri University.

Extraction and isolation. *Polygonum hydropiper* was collected in Tokushima in October 1978. The Et_2O extract (250 g) of the leaves was chromatographed on silica gel using an *n*-hexane– $EtOAc$ gradient to produce eight fractions. Fraction 4 (*n*-hexane– $EtOAc$, 4:1) (15.3 g) was rechromatographed on silica gel using a C_6H_6 – $EtOAc$ gradient and divided into eight fractions. Fraction 4-2 (420 mg) was purified with Bio-Beads S-X8 using C_6H_6 followed by HPLC (LS-410 KG, $MeCN$ – H_2O , 7:3) to give 11-ethoxycinnamolide (3) (22.6 mg). Fraction 4-5 (930 mg) was purified with Bio-Beads S-X8 using C_6H_6 to obtain isopolygonal (1) (61 mg) and polygonone (9) (1.4 mg) whose spectral data were identical to those of the compound previously obtained from 8 by pyridium chlorochromate (PCC) oxidation [1, 2]. Fraction 4-6 (1.37 g) was further chromatographed on silica gel using C_6H_6 and divided into 20 fractions. Fraction 4-6-4 was purified by HPLC (LS-410 KG, $MeCN$ – H_2O , 1:1) to give valdiviolide (10) (10.2 mg) [5]. Fraction 4-6-5 was purified by HPLC (μ -Porasil, *n*-hexane– $EtOAc$, 9:1) to obtain polygonal (21 mg) previously isolated from the seeds of *P. hydropiper* [1, 2]. Fraction 4-8 (1.1 g) was purified with Bio-Beads S-X8 using C_6H_6 followed by HPLC (LS-410 KG, $MeCN$ – H_2O , 1:1) to give polygonic acid (2) (73.1 mg) and fuegin (11) (33 mg) [5].

The $MeOH$ extract (10.0 g) of the leaf was chromatographed on silica gel using *n*-hexane– $EtOAc$ (9:1) and divided into nine fractions. Fraction 1-3 (1 g) was rechromatographed on silica gel using *n*-hexane– Et_2O (85:15) to give polygodial acetal (4b) (50 mg). Fraction 4 (400 mg) was further purified by CC on silica gel using the same solvent system to afford polygodial acetal (4a) (350 mg).

Isopolygonal (1). Colourless oil, $[\alpha]_D^{24} + 73^\circ$ (c 1.88); UV λ_{max} nm: 226 (ϵ 9330); IR ν_{max} cm^{-1} : 3540–3130 (OH), 1675 (C=O), 1635 (C=C); 1H NMR (200 MHz): δ 0.90 and 0.93 (each 3H, s, H-13, H-14), 1.15 (3H, s, H-15), 1.15 (1H, *dd*, J = 13.0, 1.6 Hz, H-5), 1.52 (1H, *ddd*, J = 13.2, 13.0, 9.7 Hz, H-6 β), 2.17 (1H, *ddd*, J = 13.2, 7.3, 1.6 Hz, H-6 α), 4.66 (1H, *dd*, J = 9.7, 7.3 Hz, H-7), 5.20 (1H, *br s*, OH, disappeared on addition of D_2O), 6.49 (1H, s, H-9), 9.39 (1H, s, CHO); MS m/z (rel. int.): 222.1643 [$M]^+$ (calc. 222.1620 for $C_{14}H_{22}O_2$) (14), 204 (26), 189 (31), 161 (17), 126 (80), 109 (75), 41 (100).

Polygonic acid (2). Colourless needles, mp 96–97°, $[\alpha]_D^{23} - 31^\circ$ (c , 1.06); UV λ_{max} nm: 225 (ϵ 8140); IR ν_{max} cm^{-1} : 3150 (OH), 1705, 1685 (C=O), 1645 (C=C); 1H NMR (200 MHz): δ 0.92, 0.95, 0.97 (each 3H, s, H-13–H-15), 1.27 (1H, *dd*, J = 11.3, 4.9 Hz, H-5), 2.25 (1H, *ddd*, J = 20.1, 11.3, 3.4, 2.4 Hz, H-6 β), 2.41 (1H, *ddd*, J = 20.1, 5.2, 4.9, 2.1 Hz, H-6 α), 3.06 (1H, *ddd*, J = 3.1, 2.4, 2.1 Hz, H-9), 6.96 (1H, *ddd*, J = 5.2, 3.4, 3.1 Hz, H-7), 9.38 (1H, s, CHO); MS m/z (rel. int.): 250 [$M]^+$ (8), 232 (6), 189 (9), 161 (6), 124 (68), 109 (100).

11-Ethoxycinnamolide (3). Colourless prisms, mp 45–47°; UV λ_{max} nm: 218 (ϵ 8530); IR ν_{max} cm^{-1} : 1755 (C=O), 1685 (C=C); 1H NMR (400 MHz): δ 0.83 (3H, s, H-15), 0.91, 0.93 (each 3H, s, H-13, H-14), 1.27 (3H, *t*, J = 7.2, OCH_2Me), 1.35 (1H, *dd*, J = 11.6, 5.5 Hz, H-5), 2.03 (1H, *ddd*, J = 20.3, 5.5, 3.9, 3.9 Hz, H-6 α), 2.40 (1H, *ddd*, J = 20.3, 11.6, 4.7, 4.5 Hz, H-6 β), 2.53 (1H, *ddd*, J = 6.1, 4.5, 3.9, 3.6 Hz, H-9), 2.95, 3.69 (each 1H, *m*, OCH_2Me), 5.32 (1H, *d*, J = 6.1 Hz, H-11), 6.84 (1H, *ddd*, J = 4.7, 3.9, 3.6 Hz, H-7); MS m/z (rel. int.): 233.1522 [$M - OCH_2Me$] $^+$ (calc. 233.1520 for $C_{15}H_{21}O_2$) (3), 204 (100), 189 (45), 109 (59).

Polygodial acetal (4a). Yellow oil, IR ν_{max} cm^{-1} : 2940, 1460,

1440, 1090, 960; ^1H NMR (400 MHz): δ 0.77 (3H, s, H-15), 0.87, 0.91 (each 3H, s, H-13, H-14), 1.35 (1H, *dd*, *J* = 11.8, 5.2 Hz, H-5), 1.91 (1H, *dddd*, *J* = 18.4, 11.8, 3.7, 3.3 Hz, H-6 β), 2.19 (1H, *dddd*, *J* = 18.4, 5.2, 3.3, 3.3 Hz, H-6 α), 2.45 (1H, *dddd*, *J* = 4.0, 3.7, 3.3, 3.3 Hz, H-9), 3.40, 3.47 (each 3H, s, OMe), 4.90 (1H, *d*, *J* = 4.0 Hz, H-11), 5.11 (1H, s, H-12), 5.78 (1H, *ddd*, *J* = 3.3, 3.3, 3.3 Hz, H-7); MS *m/z* (rel. int.): 249.1855 [M - OMe]⁺ (calc. 249.1855 for C₁₆H₂₅O₂) (30), 220 (100), 205 (100), 135 (70), 111 (85), 41 (50)

Polygodial acetal (4b). Yellow oil, IR $\nu_{\text{max}}^{\text{IR}}$ cm⁻¹: 2900, 1455, 1435, 1090; ^1H NMR (400 MHz): δ 0.88 (3H, s, H-15), 0.86, 0.91 (each 3H, s, H-13, H-14), 1.20 (1H, *m*, H-5), 1.90 (1H, *m*, H-6 β), 2.19 (1H, *m*, H-6 α), 2.21 (1H, *m*, H-9), 3.49, 3.45 (each 3H, s, OMe), 4.90 (*d*, *J* = 4.0 Hz, H-11), 5.39 (1H, s, H-12), 5.79 (1H, *ddd*, *J* = 3.3, 3.3, 3.3 Hz, H-7); MS *m/z* (rel. int.): 249.1865 [M - OMe]⁺ (calc. 249.1855 for C₁₆H₂₅O₂) (30), 220 (100), 205 (100), 135 (75), 111 (85), 41 (60)

Trifluoroacetylation of 2. A mixture of 2 (5 mg), CDCl₃-C₅D₅N (0.4–0.1 ml) and trifluoroacetic anhydride (20 μ l) was allowed to stand at room temp. in an NMR tube. After the reaction was completed (calc. 2 hr), the reaction mixture was subjected to ^1H NMR analysis. The ^1H NMR data indicated the formation of trifluoroacetyl lactol (12): ^1H NMR (400 MHz): δ 0.84 (3H, s), 0.93 (6H, s), 3.03 (1H, *ddd*, *J* = 3.5, 3.5, 3.5 Hz, H-9), 6.34 (1H, *ddd*, *J* = 3.5, 3.5, 3.5 Hz, H-7), 6.80 (1H, s, H-12).

Oxidation of 1. Compound 1 (20 mg) in CH₂Cl₂ (0.5 ml) was

oxidized by pyridium chlorochromate (PCC) (80 mg) in CH₂Cl₂ (2 ml) at room temp. for 3 hr and the reaction mixture was filtered through a short column packed with silica gel to give polygonone (9) (8 mg) whose spectral data were identical with those of 9 obtained from the PCC oxidation of polygonal (8) [1, 2].

Preparation of polygodial acetals 4a and 4b. To a soln of polygodial (5) (2 mg) in MeOH (2 ml) was added one piece of *p*-toluenesulphonic acid and the mixture was stirred at room temp. overnight. TLC examination (*n*-hexane-Et₂O, 75:25) indicated the formation of 4a and 4b (*R_f*, 0.41 for 4a and 0.52 for 4b).

Acknowledgement—This work was supported in part by a Grant-in-Aid for Cancer Research (to Y.A.) from the Ministry of Health and Welfare.

REFERENCES

1. Asakawa, Y. and Takemoto, T. (1979) *Experientia* **35**, 1420.
2. Fukuyama, Y., Sato, T., Asakawa, Y. and Takemoto, T. (1982) *Phytochemistry* **21**, 2895.
3. Asakawa, Y. (1984) *Rev. Latinoam. Quim.* **14**, 109.
4. Fukuyama, Y., Sato, T., Miura, I., Asakawa, Y. and Takemoto, T. (1983) *Phytochemistry* **22**, 549.
5. Appel, H. H., Bond, R. P. M. and Overton, K. H. (1963) *Tetrahedron* **19**, 635.